Проект издательского дома «МедиаПро»
Получать дайджест новостей

Статьи

Назад к списку статей

Исследование нефтяных и газовых скважин

Цели и задачи исследования скважин и пластов

Исследования скважин и пластов проводятся с целью получения информации об объекте разработки, об условиях и интенсивности притока флюидов в скважину, об изменениях, происходящих в пласте в процессе его разработки. Такая информация необходима для организации правильных, экономически оправданных процессов добычи нефти, для осуществления рациональных способов разработки месторождения, для обоснования способа добычи нефти, выбора оборудования для подъема жидкости из скважины, для установления наиболее экономичного режима работы этого оборудования при достижении наиболее высокого коэффициента нефтеотдачи. Изучение характеристики залежей начинается сразу же после их открытия.

Одна из главных целей исследований в начальный период заключается в получении информации, необходимой для подсчета запасов нефти и газа. Для оценки извлекаемых запасов залежи, т.е тех запасов, которые при современной технологии нефтегазодобычи можно извлечь из пласта, необходимо провести исследования по определению коэффициента нефтеотдачи. Этот показатель является наиболее важным при окончательном определении эффективности разработки месторождения.

Далее необходимо оценить промышленное значение залежи, для этого необходимо знать товарные качества нефти и газа, а также свойства залежей, определяющие производительность скважин, толщину и проницаемость пласта, вязкость жидкости в пластовых условиях. После того, как установлены промышленные запасы нефти или газа и принято решение о вводе залежи в промышленную эксплуатацию, приступают к составлению технологической схемы или проекта разработки залежи. Для этой цели, кроме той информации, которая уже имеется и использована в подсчете запасов, необходим комплекс данных об изменении гидродинамических характеристик пласта по площади залежи и в законтурной области, о продуктивности пласта в целом и отдельных его интервалов в различных частях залежи, об эффективности применяемых способов вскрытия пласта и перфорации скважин, об условиях работы скважин. В процессе промышленной эксплуатации скважин их исследуют главным образом с целью уточнения гидродинамических характеристик пластов, выявления действительной технологической эффективности отдельных элементов, принятой системы разработки (система поддержания пластового давления, схема расположения скважин, принятый способ вскрытия пластов, способ эксплуатации скважин и др.) и определения эффективности проводимых мероприятий по повышению или восстановлению производительности добывающих скважин. При исследовании газовых скважин широко применяют различные методы определения газоконденсатности залежей с помощью передвижных установок, снабженных специальными сепараторами. Цель исследования - определение количества сырого конденсата, выделяющегося в процессе сепарации газа при различных давлениях и температурах, количества твердых примесей и жидкой фазы, выделяющейся на забое и по стволу скважины в результате снижения давления и температуры от пластовых условий до значений, при которых газ поступает на устье скважины.

Методы исследования, применяемые при разработке нефтяных и газовых месторождений

Изучение продуктивных пластов на всех стадиях промышленной разведки и разработки залежей осуществляют в основном лабораторными, промыслово-геофизическими и гидродинамическими методами.

Лабораторные методы

К лабораторным относят методы, основанные на прямых измерениях физико-химических, механических, электрических и других свойств образцов горных пород и проб пластовых жидкостей (газов), отбираемых в процессе бурения и эксплуатации. При этих методах исследования определяются следующие параметры: пористость, проницаемость пород, вязкость и плотность нефти. Эти методы применяются при подсчете запасов нефти и составлении проектов разработки месторождений нефти и газа.

Промыслово-геофизические методы

К промыслово-геофизическим относят методы, основанные на изучении электрических, радиоактивных и других свойств горных пород с помощью приборов, спускаемых в скважину на кабеле. По результатам геофизических исследований можно определить толщину пласта, пористость, проницаемость, нефтенасыщенность и др. Для этого данные промысловых измерений сопоставляют с результатами лабораторных испытаний образцов горных пород и проб пластовых жидкостей (газов). Поэтому такие методы исследования относят к косвенным методам изучения свойств продуктивных пластов.

Гидродинамические методы

К гидродинамическим методам относят методы, основанные на косвенном определении некоторых важных свойств продуктивных пластов по данным прямых измерений дебитов скважин и забойных давлений при установившихся и неустановившихся процессах фильтрации жидкостей и газов в пласте. В основу этих методов положены формулы гидродинамики, описывающие связь между дебитами, давлениями и характеристиками продуктивных пластов (проницаемость, гидропроводность др.). Гидродинамические исследования осуществляют с помощью глубинных манометров и расходомеров, спускаемых в скважину на кабеле (проволоке), а также с помощью приборов, установленных на устье скважины. В отличие от лабораторных и промыслово-геофизических методов при гидродинамических исследованиях определяют средние значения свойств продуктивных пластов на значительном расстоянии от стенок скважин или между ними.

В нефтепромысловой практике применяют следующие основные методы гидродинамических исследований:

  • установившихся отборов;
  • восстановления давления;
  • взаимодействия скважин (гидропрослушивание);
  • термодинамические.

Исследования газовых скважин также проводят при стационарных (установившихся) и нестационарных режимах фильтрации газов. В последнем случае используют следующие методы:

  • восстановления забойного давления после остановки скважины;
  • стабилизации забойного давления и дебита при пуске скважин.

По данным, полученным в результате исследования газовых скважин, оценивают изменение параметров пласта в процессе эксплуатации скважин.

Исследование скважин при неустановившихся режимах

Технология исследования

Цель исследования заключается в оценке гидродинамического совершенства скважины, фильтрационных параметров и неоднородности свойств пласта по изменению давления, то есть в получении и обработке кривой изменения давления во времени. При этом значительно сокращаются затраты времени на исследование. Технология исследования состоит в измерении параметров работы скважины (дебита и забойного давления) при установившемся режиме, затем в изменении режима работы и последующем измерении изменения забойного давления в скважине. Забойное давление измеряют глубинным манометром.

Исследование нагнетательных скважин

Нагнетательные скважины исследуют так же, как и добывающие при установившихся и неустановившихся режимах. Принципиальное отличие исследований заключается в том, что для построения индикаторной кривой и кривой восстановления давления чаще используют измерения давления на устье скважины.

Изучение профилей притока и поглощения пластов добывающих и нагнетательных скважин

Продуктивный пласт неоднороден по физическим свойствам и поэтому приток жидкости и газа в скважину по мощности пласта распределяется неравномерно. Для своевременного принятия мер по увеличению разрабатываемой мощности пласта и правильного выбора воздействия на забой изучается профиль притока. Для этого используются глубинные дебитомеры (расходомеры). Дебитомеры или расходомеры перемещаются вдоль перфорированного интервала и позволяют определить приток жидкости вдоль интервала вскрытия в добывающих скважинах (профили притока) и интенсивность поглощения нагнетательных скважинах профили поглощения). Скважинные дебитометрические исследования дают важную информацию о действительно работающей толщине пласта, о долевом участии в общем дебите отдельных пропластков, о результатах воздействия на те или иные пропластки с целью интенсификации притока или увеличения поглотительной способности скважин. Эти исследования, как правило, дополняются одновременным измерением влагосодержания потока (% воды), давления, температуры и их распределением вдоль ствола скважины. Изучение профилей притока, снятых при различных режимах эксплуатации скважины с одновременным измерением забойного давления на каждом из режимов, позволяет оценить продуктивность и свойства каждого пласта.

Понятие о термодинамических методах исследования скважин

Термодинамические исследования позволяют изучать распределение температуры в длительно простаивающей (геотерма) и в работающей (термограмма) скважине, по которому можно определять геотермический градиент, выявлять работающие и обводненные интервалы пласта, осуществлять анализ температурных процессов в пласте (при тепловом воздействии, закачке холодной воды) и выработки запасов при заводнении, контролировать техническое состояние скважин и работу подземного скважинного оборудования. Фильтрация в скважину вызывает дроссельный эффект. При притоке воды и нефти поток нагревается, а при притоке газа - охлаждается. По термограмме можно оценить условия и радиус зоны выпадения парафина в пласте. При притоке однородной нефти дроссельные эффекты незначительны (температура нефти может повышаться всего на 0,4-0,6°С при депрессии около 1 МПа). На термограммах, снятых в остановленных скважинах, выделяют аномалии температуры. Более четко такие аномалии видны на термограммах, снятых после остановки нагнетательных скважин, что позволяет выделить поглощающие пласты. Поинтервальный приток нефти из нескольких пластов можно определить по термограмме, снятой в продолжительно (более нескольких суток) работающей нефтяной скважине при постоянном отборе. Потоки из каждого пласта, имея различную температуру и последовательно смешиваясь, обуславливают скачкообразное изменение температуры потока смеси. Термометрия позволяет также определить места нарушения герметичности колонн, перетоки между пластами и др.

Гидропрослушивание пластов

Цель исследования пластов по методу гидропрослушивания - изучение параметров пласта, линий выклинивания пласта, тектонических нарушений. Сущность метода заключается в наблюдении за изменением уровня жидкости или давления в скважинах, обусловленным изменением отбора жидкости в соседних скважинах. Фиксируя начало прекращения или изменения отбора жидкости в "возмущающей" скважине и начало изменения давления в "реагирующей" скважине по времени пробега "волны давления" от одной скважины до другой, можно судить о свойствах пласта. При известном расстоянии между скважинами и зафиксированном времени пробега "волны давления" определяют пьезопроводность пласта. Если при гидропрослушивании в скважине не отмечается реагирование на изменение отбора в соседней скважине, то это указывает на наличие между скважинами непроницаемого экрана (тектонического нарушения, выклинивания пласта). Таким образом, гидропрослушивание позволяет выявить особенности строения пласта, которые не всегда представляется возможным установить в процессе разведки и геологического изучения месторождения.

Выбор оборудования и приборов для исследования

При исследовании скважин и спуске скважинных приборов используется специальное оборудование и устройства. Для исследования фонтанных и газлифтных скважин с целью предупреждения выброса нефти на поверхность применяют лубрикатор 6. У фонтанной скважины устанавливают мостки для спуска и подъема приборов из скважины. При проведении исследований автомашину с лебедкой устанавливают на расстоянии 20-40 м от устья так, чтобы ось барабана лебедки была перпендикулярна к проволоке, идущей от устья скважины к барабану. Перед спуском прибора в скважину убеждаются в герметичности сальника лубрикатора. Прибор спускают со скоростью 0,7-0,8 м/с. При подходе прибора к заданной глубине скорость замедляют и при достижении заданной глубины полностью затормаживают барабан. Время выдержки прибора на заданной глубине определяется исходя из поставленных задач.

Если измеряется только давление на забое, то прибор остается без движения на заданной глубине 20-30 мин. Если снимается кривая восстановления давления, то прибор выдерживают в течение 2-4 ч. Из скважины прибор поднимают с помощью мотора автомашины на второй скорости. При достижении прибором глубины 30-50 м уменьшают скорость подъема, а за 5-7 м до устья его поднимают вручную. Убедившись, что прибор находится в лубрикаторе, и извлекают из него прибор. Открыв вентиль, снижают давление в лубрикаторе, перекрывают задвижку на буфере. Открыв вентиль, снижают давление в лубрикаторе и извлекают из него прибор. Затем разбирают прибор и извлекают бланк-диаграмму с записью давления во времени.

При исследовании скважин приборами с дистанционным измерением используют автоматическую промысловую электронную лабораторию АПЭЛ или АИСТ. В лаборатории АПЭЛ установлена малогабаритная лебедка для спуска глубинных манометров с местной регистрацией. В комплект лаборатории входят скважинные дистанционные приборы: расходомер-дебитомер РГД-2М, термометрТ4Г-1 и влагомер ВГД-2М. Сигнал от скважинного прибора передается по кабелю на вторичный блок соответствующего прибора, в котором сигнал усиливается и передается в блок частотомера, а затем передается на вход самопишущего потенциометра. Измеряемые параметры могут регистрироваться также с помощью стрелочных или цифровых приборов в координатах параметр-время или параметр-глубина. Так, дебит в системах сбора чаще измеряют объемным или весовым методом.

Измерение расходов жидкости непосредственно в скважинах, когда требуется исследовать изменение расхода по длине фильтра, имеет свои особенности, обусловленные тем, что прибор в скважине может занимать самое различное положение (находиться в центре или лежать на стенке), в результате чего скоростной напор жидкости будет меняться и тем самым прибор будет регистрировать разный расход. В связи с этим скважинные приборы имеют специальные устройства, предназначенные для направления всего потока через калибровочные отверстия прибора или для центровки положения скважинного прибора в стволе скважины. Первые называются пакерующими устройствами, вторые - центраторами. В зависимости от назначения скважинные приборы для измерения расходов жидкости подразделяются на расходомеры, предназначенные для измерения расходов воды, нагнетаемой в скважину и дебитомеры, служащие для измерения дебитов нефти и газа. Конструктивное отличие этих групп приборов - диаметр корпуса снаряда. Расходомеры имеют диаметр корпуса больше, чем дебитомеры, так как спускаются в нагнетательные скважины, расход жидкости через которые выше, чем добывающих. Диаметр корпуса скважинных дебитомеров не превышает 40-42 мм.

Скважинные приборы расходомеры и дебитомеры могут быть с местной регистрацией и дистанционные, когда измерения расхода вторичными приборами регистрируются на поверхности. Преимущественное значение для исследования скважин получили приборы с дистанционной регистрацией. Среди приборов этого типа получили распространение расходомеры РГД-3, РГД-5, РГД-2М, ВРГД-1, скважинный комплексный прибор "Поток-4" и другие, а для измерения расхода закачиваемой в скважины горячей воды - расходомер "Терек-3".

Для измерения давления применяют скважинные манометры, которые выпускаются с местной регистрацией и дистанционные. Среди приборов с местной регистрацией наибольшее распространение получили геликсные скважинные манометры типов МГН-2, МПМ-4, МГИ-1М, МГИ-2М. Приборы с местной регистрацией спускают в скважину на проволоке, а дистанционные приборы - на одножильном или трехжильном кабеле.

 

По материалам https://wudger.ru

Подписаться на рассылку